
Formal Verification of Programs That Use MPI
One-Sided Communication

Salman Pervez1, Ganesh Gopalakrishnan1, Robert M. Kirby1,
Rajeev Thakur2, and William Gropp2

1 School of Computing
University of Utah

Salt Lake City, UT 84112, USA

2 Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA

Abstract. We used formal-verification methods based on model check-
ing to analyze the correctness properties of one existing and two new
distributed-locking algorithms implemented by using MPI’s one-sided
communication. Model checking exposed an overlooked correctness issue
with the first algorithm, which had been developed by relying only on
manual reasoning. Model checking helped confirm the basic correctness
properties of the two new algorithms, while also identifying the remain-
ing problems in them. Our experience is that MPI-based programming,
especially the tricky and relatively poorly understood one-sided commu-
nication features, stand to gain immensely from model checking. Consid-
ering that many other areas of concurrent hardware and software design
now routinely employ model checking, our experience confirms that the
MPI community can benefit greatly from the use of formal verification.

1 Introduction

Concurrent protocols are notoriously hard to design and verify. Experience has
shown that virtually all nontrivial protocol implementations contain bugs such as
deadlocks, livelocks, and memory leaks, despite extensive care taken during de-
sign and testing. Most of these bugs are basic design errors due to “unexpected”
(untested) concurrent behaviors. Therefore, it stands to reason that if finite-state
models of these protocols are created and exhaustively analyzed for the desired
formal properties, robust protocol implementations would result. The technol-
ogy for such finite-state modeling, property description, and exhaustive analysis
developed over the past three decades—known as model checking [2]—has been
successfully applied to numerous software and hardware systems. Model check-
ing is now an integral part of the Windows Device Driver Development Kit [1].
Virtually all cache-coherence protocols developed and deployed in modern mi-
croprocessors have been verified by using model checking. However, although

1

concurrency and concurrent-programming bugs in parallel scientific program-
ming are similar to those in other areas, we find little evidence of model checking
being applied to verify parallel scientific programs.

In this paper, we conduct case studies that show the promise of the appli-
cation of model checking in the area of parallel scientific programming using
MPI. In particular, we focus on MPI one-sided communication [10]. Being (rel-
atively) recently introduced and implemented, MPI one-sided communication
is insufficiently understood and documented. One-sided communication involves
shared-memory concurrency, which is known to be inherently harder to reason
about than the message-passing concurrency of traditional MPI. One-sided com-
munication exacerbates verification complexity because it guarantees only weak
ordering semantics with respect to loads and stores, which can freely reorder
within a given synchronization epoch. This paper demonstrates that, by using
model checking, bugs in MPI programs that use one-sided communication can
be caught easily, while expending only modest amounts of human and computer
time.

After presenting background on MPI one-sided communication in Section 2,
we provide an overview of model checking in Section 3. We then describe the
design of an existing distributed byte-range locking algorithm [17] and its formal
verification through model checking (Section 4). Model checking helped uncover
the serious problem of a potential deadlock, which the authors of the algorithm
were unaware of. Model checking also found a more benign problem of extra
(zero-byte) sends in the algorithm, which might lend itself to an implementation-
dependent correction using MPI Iprobe and posted receives. However, this prob-
lem may well turn into a memory leak. We then present two other designs of
the same algorithm, formally verify them using model checking, and provide
empirical observations to interpret these model-checking results (Section 5). In
Section 6, we conclude with a discussion of future work.

To our knowledge, nobody has applied model checking to analyze programs
that use MPI one-sided communication. Siegel and Avrunin have used model
checking to verify programs that use basic MPI point-to-point communication [12–
14]. Kranzlmüller used a formal event-graph based method to help understand
MPI program executions [6]. Matlin et al. used the SPIN model checker to verify
parts of the MPD process manager used in MPICH2 [9].

2 MPI One-Sided Communication

For lack of space, we review only the features of MPI one-sided communication
relevant to this paper. One feature in MPI one-sided communication allows pro-
cesses to gain exclusive access to communication windows in a block of code
bracketed by MPI_Win_lock and MPI_Win_unlock calls [10]. Read and write
accesses can be performed by a process holding exclusive access to a window
through MPI_Put and MPI_Get. The main semantic difficulty stems from these
put and get calls being not required to obey their syntactic program order in
terms of when they are performed. It is well known (see, e.g., [15]) that such

2

ordering guarantees are crucial to the correctness of even simple concurrent
protocols such as Peterson’s mutual exclusion. The specification of one-sided
communication in MPI further exacerbates the issue by introducing a complex
set of informally stated rules that can easily lead to contradictory interpreta-
tions.3 Common mistakes users make include nesting synchronization epochs on
the same window object (such as a win lock/unlock within a fence), doing read-
modify-writes via a get-modify-put in the same synchronization epoch (even
though gets and puts are defined to be nonblocking), and doing a put and a
get to/from the same memory location in the same synchronization epoch. For
example, the broadcast algorithms in Appendix B and C of [8] are incorrect
because they rely on MPI Get being a blocking function, which it is not. In im-
plementations that take advantage of the nonblocking nature of MPI Get, such as
MPICH2 [16], the code will, indeed, go into an infinite loop. Since MPI one-sided
communication can be implemented in a variety of ways [4], the result of making
such mistakes is often implementation dependent: the program may work fine
on some implementations and not on others.

3 Model Checking

Model checking is a term that has acquired an overloaded meaning. It essentially
is the activity of exhaustively examining all possible behaviors of a model of a
concurrent program (akin to wind-tunnel testing of scale models of airplanes).
We consider finite-state model checking where the model of the concurrent sys-
tem is expressed in a modeling language—Promela [5] in our case (all the pseu-
docodes expressed in this paper have an almost direct Promela encoding). By
exhaustively executing the concurrent-system model, a model checker reveals
its entire state-transition structure and is able to establish temporal properties,
such as “always P” and “A implies eventually Q” with respect to this struc-
ture. The state graphs we generate are a result of the interleaved execution of
various processes or threads. A fundamental problem with model checking is
that reachable state graphs are exponential in the number of concurrent pro-
cesses. The past three decades of research has, essentially, focused on getting a
good handle on this exponential growth, so much so that astronomically large
finite-state spaces—or often even many classes of infinite state spaces—can be
handled by model checkers. Despite the very large state spaces of the MPI mod-
els discussed in this paper, our model checking runs finished within acceptable
durations (often in minutes) on standard workstations.

4 Formal Verification of Byte-Range Locking

In [17], Thakur et al. present an algorithm implemented by using MPI one-sided
communication (with passive-target lock-unlock synchronization) for coordinat-
ing a collection of parallel processes contending for byte-range locks. We first
3 A collaborative project between the University of Utah and Argonne is addressing

the issue of elucidating as well as formalizing this specification.

3

describe the algorithm briefly, followed by a description of how we model checked
it. Because of space limits, we cannot present the full pseudocode of the original
algorithm; the reader may refer to the original paper [17] for details.

4.1 The Byte-Range Locking Algorithm

Each process keeps in a single common memory window (lockwin) its state
consisting of a flag (initialized to 0) and the start and end values for the
byte range (initialized to -1). A flag of 0 indicates that the process does not
have the lock, while 1 indicates that it either has acquired the lock or wants to
acquire the lock. A process updates its state and reads others’ states by acquiring
exclusive access to lockwin and making MPI_Put and MPI_Get calls. Since the
processes acquire exclusive access, the actions of any one process on lockwin
are guaranteed to be atomic with respect to the actions of other processes.

In order to acquire the lock, a process sets its flag to 1, updates its start
and end values, and gets the corresponding values of other processes. It then
checks whether any other process has set a conflicting byte range and has a flag
value of 1. If it does not find such a process, it assumes that it has acquired the
lock. Otherwise, it assumes that it does not have the lock, resets its flag to 0
via another lock-put-unlock, and blocks on a zero-byte MPI_Recv call, waiting
for a process that has the lock to wake it up with a zero-byte send. The process
will retry the lock after receiving the message. To release a lock, a process again
acquires exclusive access, resets its flag to 0 and its start and end offsets to -1,
and gets the values of other processes. If it finds a process with a conflicting
byte-range (ignoring the flag), it sends a zero-byte message (via MPI_SEND) to
wake up that process.

4.2 Checking the Byte-Range Locking Algorithm

To model the algorithm, we first needed to model the MPI one-sided commu-
nication constructs used in the algorithm and capture their semantics precisely
as specified in the MPI Standard [10]. For example, the MPI Standard speci-
fies that if a communication epoch is started with MPI Win lock, it must end
with MPI Win unlock and that the put/get/accumulate calls made within this
epoch are not guaranteed to complete before MPI Win unlock returns. Further-
more, there are no ordering guarantees of the puts/gets/accumulates within an
epoch. Therefore, in order to obtain adequate execution-space coverage, all per-
mutations of put/get/accumulate calls in the epoch must be examined. However,
the byte-range locking algorithm uses the MPI LOCK EXCLUSIVE lock type, which
means that while a certain process has entered the synchronization epoch, no
other process may enter until that process has left. This makes the synchro-
nization epoch an atomic block and renders all permutations of the calls within
it equivalent from the perspective of other processes. Modeling the byte-range
locking algorithm itself was relatively straightforward. (This experience augurs
well for the checking of other algorithms in the area of MPI one-sided commu-
nication, as one of the significant challenges in model checking lies in the ease

4

of modeling constructs in the target domain using modeling primitives in the
modeling language.)

When we model checked our model with three processes, our model checker,
SPIN [5], discovered an error indicating an “invalid end state.” Deeper probing
revealed the following error scenario (explained through an example, which as-
sumes that P1 tries to lock byte-range 〈1, 2〉, P2 tries to lock 〈3, 4〉, and P3 tries
to lock 〈2, 3〉):

– P1 and P3 successfully acquire their byte-range locks.
– P2 then tries to acquire its lock, notices conflict with respect to both P1 and

P3, and blocks on the MPI_Recv.
– P1 and P3 release their locks, both notice conflicts with P2, and both perform

an MPI Send, when only one send is needed.

Hence, while P2 ends up successfully waking up and acquiring the lock, the
extra MPI Sends may accumulate in the system. This is a subtle error whose
severity depends on the MPI implementation being used. Recall that the MPI
Standard allows implementors to decide whether to block on an MPI Send call.
In practice, a zero-byte send will rarely block. Nonetheless, an implementation
of the byte-range locking algorithm can address this problem by periodically
calling MPI_Iprobe and matching any unexpected messages with MPI_Recvs.

We then modeled the system as if these

2 [10,20,1]
1 [10,20,1]

3 Acquire

4 [−1,−1,0]

5 Send

6 [10,20,1]
7 [10,20,0]

9 [10,20,1]

Receive8

[10,20,0]11

13 Receive
10 [10,20,0]

Receive12

P1 P2

Fig. 1. A deadlock scenario found
through model checking.

extra MPI Sends do not exhaust the sys-
tem resources and hence do not cause
processes to block. In this case, model
checking detected a far more serious dead-
lock situation, summarized in Figure 1.
P1 expresses its intent to acquire a lock
in the range 〈10, 20〉 (1), with P2 follow-
ing suit (2). P1 acquires the lock (3), fin-
ishes using it and relinquishes it (4), and
performs a send to unblock P2 (5). Be-
fore P2 gets a chance to change its global
state, P1 tries to reacquire the lock (6).
P1 reads P2’s current flag value as 1, so
it decides to block by carrying out events
(10) and (12). At this point, P2 changes
its global state, receives the message sent
by P1 (8), and proceeds to reacquire the
lock (9). P2 reads P1’s current flag value
as 1, so it decides to block by carrying out events (11) and (13). Both processes
now block on receive calls, and the result is deadlock. We note that the authors
of the algorithm were unaware of this problem until the model checker found it!

5

5 Correcting the Byte-Range Locking Algorithm

We propose two approaches to fixing this deadlock problem and describe our
experience with using model checking on these solutions.

Alternative 1. One way to eliminate deadlocks is to add a third state to the
“flag” used in the algorithm. This is shown in the pseudocode in Figure 2. In the
original algorithm, a flag value of ‘0’ indicates that the process does not have the
lock, while a flag value of ‘1’ indicates that it either has acquired the lock or is
in the process of determining whether it has acquired the lock. In other words,
the ‘1’ state is overloaded. In the proposed fix, we add a third state of ‘2,’ with
‘0’ denoting the same as before, ‘1’ now denoting that the process has acquired
the lock, and ‘2’ denoting that it is in the process of determining whether it
has acquired the lock. There is no change to the lock-release algorithm, but the
lock-acquire algorithm changes as follows.

When a process wants to acquire a lock, it writes its flag value as ‘2’ and
its start and end values in the memory window. It also reads the state of the
other processes from the memory window. If it finds a process with a conflicting
byte range and a flag value of ‘1,’ it knows that it does not have the lock. So it
resets its flag value to ‘0’ and blocks on an MPI Recv. If no such process (with
conflicting byte range and flag=1) is found, but there is another process with a
conflicting byte-range and a flag value of ‘2’, the process resets its flag to ‘0’, its
start and end offsets to -1, and retries the lock from scratch. If neither of these
cases is true, the process sets its flag value to ‘1’ and considers the lock acquired.
An assessment of this protocol using model checking is presented later in this
section.

Alternative 2. This approach uses the same values for the flag as the original
algorithm, but when a process tries to acquire a lock and determines that it does
not have the lock, it picks a process (that currently has the lock) to wake it up and
then blocks on the receive. For this purpose, we add a fourth field (the pick field)
to the values for each process in the memory window (see Figure 3). The process
about to block must now decide whether to block. This decision is based on two
factors: (i) Has the process selected to wake it up already released the lock? and
(ii) Is there a possibility of a deadlock caused by a cycle of processes that wait
on each other to wake them up? The latter can be detected and avoided by using
the algorithm in Figure 4. The former can be easily determined by reading the
values returned by the MPI_Get on line 26. If the selected process has already
released the lock, a new process must be picked in its place. We simply traverse
the list of conflicting processes until we find one that has not yet released the
lock. If no such process is found, the algorithm tries to reacquire the lock. Note
the added complexity of going through the list of conflicting processes and doing
put and get operations each time. However, if this loop is successful and the
process blocks on MPI_Recv, we can save considerable processor time in the case
of highly contentious lock requests as compared with Alternative 1.

6

1 Lock_acquire (int start , int end)
2 {
3 val [0] = 2; /* flag */ val [1] = start ; val [2] = end ;
4 while (1) {
5 /* add self to locklist */
6 MPI_Win_lock (MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin);
7 MPI_Put (& val , 3, MPI_INT , homerank , 3*(myrank), 3, MPI_INT ,
8 lockwin);
9 MPI_Get (locklistcopy , 3*(nprocs -1) , MPI_INT , homerank , 0, 1,

10 locktype1 , lockwin);
11 MPI_Win_unlock (homerank , lockwin);
12 /* check to see if lock is already held */
13 conflict = 0;
14 flag1 = 0;
15 flag2 = 0;
16 for (i=0; i < (nprocs - 1); i ++) {
17 if ((flag == 1) && (byte ranges conflict with lock request)) {
18 flag1 = 1;
19 break;
20 }
21 if ((flag == 2) && (byte ranges conflict with lock request)) {
22 flag2 = 1;
23 break;
24 }
25 }
26 if (flag1 == 1) {
27 /* reset flag to 0, wait for notification , and then retry the lock */
28 MPI_Win_lock (MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin);
29 val [0] = 0;
30 MPI_Put (val , 1, MPI_INT , homerank , 3*(myrank), 1, MPI_INT ,
31 lockwin);
32 MPI_Win_unlock (homerank , lockwin);
33 /* wait for notification from some other process */
34 MPI_Recv (NULL , 0, MPI_BYTE , MPI_ANY_SOURCE , WAKEUP , comm ,
35 MPI_STATUS_IGNORE);
36 /* retry the lock */
37 Lock_acquire(start , end);
38 }
39 else if (flag2 == 1) {
40 /* reset flag to 0, start/end offsets to -1, and then retry the lock */
41 MPI_Win_lock (MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin);
42 val [0] = 0; /* flag */ val [1] = -1 ; val [2] = -1 ;
43 MPI_Put (val , 3, MPI_INT , homerank , 3*(myrank), 3, MPI_INT ,
44 lockwin);
45 MPI_Win_unlock (homerank , lockwin);
46 /* retry the lock */
47 Lock_acquire(start , end);
48 }
49 else {
50 MPI_Win_lock (MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin);
51 val [0] = 1;
52 MPI_Put (val , 1, MPI_INT , homerank , 3*(myrank), 1, MPI_INT ,
53 lockwin);
54 MPI_Win_unlock (homerank , lockwin);
55 /* lock is acquired */
56 break ;
57 }
58 }
59 }

Fig. 2. Pseudocode for the deadlock-free byte-range locking algorithm (Alternative 1).

7

1 Lock_acquire (int start , int end)
2 {
3 val [0] = 1; /* flag */ val [1] = start ; val [2] = end ; val[3] = -1 /* pick */ ;
4 int picklist[num_procs];
5 while (1) {
6 /* add self to locklist */
7 MPI_Win_lock (MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin);
8 MPI_Put (& val , 4, MPI_INT , homerank , 4*(myrank), 4, MPI_INT ,
9 lockwin);

10 MPI_Get (locklistcopy , 4*(nprocs -1) , MPI_INT , homerank , 0, 1,
11 locktype1 , lockwin);
12 MPI_Win_unlock (homerank , lockwin);
13 /* check to see if lock is already held */
14 cprocs_i = 0;
15 for (i=0; i < (nprocs - 1); i ++) {
16 if ((flag == 1) && (byte range conflicts with Pi‘s request)) {
17 conflict = 1; picklist[cprocs_i] = Pi; cprocs_i ++; }
18 }
19 if (conflict == 1) {
20 for(j=0; j < cprocs_i; j++) {
21 MPI_Win_lock (MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin);
22 val [0] = 0; val [3] = picklist[j];
23 /* reset flag to 0, indicate pick and pick_counter */
24 MPI_Put (&val , 4, MPI_INT , homerank , 4*(myrank), 4, MPI_INT ,
25 lockwin);
26 MPI_Get (locklistcopy , 4*(nprocs -1) , MPI_INT , homerank , 0, 1,
27 locktype1 , lockwin);
28 MPI_Win_unlock (homerank , lockwin);
29 if(picklist[j] has released the lock) || detect_deadlock () {
30 /* repeat for the next process in picklist */
31 j++;
32 }
33 else {
34 /* wait for notification from picklist[j] */
35 MPI_Recv (NULL , 0, MPI_BYTE , MPI_ANY_SOURCE , WAKEUP , comm ,
36 MPI_STATUS_IGNORE);
37 break; /* retry the lock */
38 }
39 }
40 /* if the entire list has been traversed , retry the lock */
41 }
42 else {
43 break; /* lock is acquired */
44 }
45 }
46 }

Fig. 3. Pseudocode for the deadlock-free byte-range locking algorithm (Alternative 2).

1 detect_deadlock () {
2 cur_pick = locklistcopy [4 * myrank + 3];
3 while(i < num_procs) {
4 /* picking this process means a cycle is completed */
5 if(locklistcopy [4 * cur_pick + 3] == my_rank)
6 return 1;
7 /* no cycle can be formed */
8 else if(locklistcopy [4 * cur_pick + 3] == -1)
9 return 0;

10 else
11 cur_pick = locklistcopy [4 * cur_pick + 3];
12 }
13 }

Fig. 4. Avoiding circular loops among processes picked to wake up other processes in
Alternative 2.

8

Assessment of the Alternative Algorithms. We model checked these al-
gorithms using SPIN, which helped establish the following formal properties of
these algorithms:

– Absence of deadlocks (both alternatives).
– Communal progress (that is, if a collection of processes request a lock, then

someone will eventually obtain it). Alternative 2 satisfies this under all fair
schedules (all processes are scheduled to run infinitely often), whereas Alter-
native 1 places a few additional restrictions to rule out a few rare schedules
(details in [11]).

We note that neither of these alternatives eliminates the extra sends, but, as de-
scribed in Section 4, an implementation can deal with them by using MPI_Iprobe.
That said, Alternative 2 considerably reduces these extra sends, as it restricts
the number of processes that can wake up a particular process compared with
Alternative 1. The exact performance tradeoffs of these algorithms will be de-
termined as part of our future work. We are still seeking algorithms that avoid
deadlock, avoid extra sends, and are efficient.

6 Conclusions and Future Work

We have shown how formal verification based on model checking can be used to
find actual deadlocks in published algorithms that use the MPI one-sided com-
munication primitives. We have also discussed how this technology can help shed
light on a number of related issues such as forward progress and the possibility of
there being unconsumed messages. We presented and analyzed two deadlock-free
algorithms for byte-range locking and verified their characteristics.

Nonetheless, our work in this field is still in its early stages. Capitalizing on
the maxim that formal methods can have their biggest impact when applied to
constructs that are relatively new or are under development, we plan to formalize
the entire set of MPI one-sided communication primitives. This can help develop
a comprehensive approach to verifying programs that use the MPI one-sided
constructs. As future case studies, we will analyze other algorithms, such as the
scalable fetch-and-increment algorithm described in [3]. We plan to explore the
use of automated tools to extract models from MPI programs, instead of creating
them by hand. We also plan to explore the advantages of using other modeling
languages, such as +CAL [7], and investigate the possibility of directly model
checking MPI programs, instead of their extracted formal models.

Acknowledgments

This work was supported by NSF award CNS-0509379 and by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-ENG-38.

9

References

1. Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM and
static driver verifier: Technology transfer of formal methods inside Microsoft. In
Proceedings of IFM 04: Integrated Formal Methods, pages 1–20. Springer, April
2004.

2. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, MA, 1999.

3. William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features
of the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

4. William Gropp and Rajeev Thakur. An evaluation of implementation options for
MPI one-sided communication. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, 12th European PVM/MPI Users’ Group Meeting,
pages 415–424. LNCS 3666, Springer, September 2005.

5. Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

6. Dieter Kranzlmüller. Event Graph Analysis for Debugging Massively Parallel
Programs. PhD thesis, John Kepler University Linz, Austria, September 2000.
http://www.gup.uni-linz.ac.at/~dk/thesis.

7. Leslie Lamport. http://research.microsoft.com/users/lamport/tla/pluscal.html.
8. Glenn R. Luecke, Silvia Spanoyannis, and Marina Kraeva. The performance

and scalability of SHMEM and MPI-2 one-sided routines on a SGI Origin 2000
and a Cray T3E-600. Concurrency and Computation: Practice and Experience,
16(10):1037–1060, 2004.

9. Olga Shumsky Matlin, Ewing Lusk, and William McCune. SPINning parallel sys-
tems software. In Model Checking of Software: 9th International SPIN Workshop,
pages 213–220. LNCS 2318, Springer, 2002.

10. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997. http://www.mpi-forum.org/docs/docs.html.

11. Salman Pervez. Byte-range locks using MPI one-sided communica-
tion. Technical report, University of Utah, School of Computing, 2006.
http://www.cs.utah.edu/formal verification/OnesidedTR1/.

12. Stephen F. Siegel and George S. Avrunin. Verification of MPI-based software for
scientific computation. In Proceedings of the 11th International SPIN Workshop
on Model Checking Software, pages 286–303. LNCS 2989, Springer, April 2004.

13. Stephen F. Siegel and George S. Avrunin. Modeling wildcard-free MPI programs
for verification. In Proceedings of the ACM SIGPLAN Symposium on Principles
and Practices of Parallel Programming, pages 95–106, June 2005.

14. Stephen F. Siegel, Anastasia Mironova, George S. Avrunin, and Lori A. Clarke.
Using model checking with symbolic execution to verify parallel numerical pro-
grams. In Proceedings of the ACM SIGSOFT 2006 International Symposium on
Software Testing and Analysis, July 2006.

15. Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Inc., second
edition, 2001.

16. Rajeev Thakur, William Gropp, and Brian Toonen. Optimizing the synchroniza-
tion operations in MPI one-sided communication. International Journal of High-
Performance Computing Applications, 19(2):119–128, Summer 2005.

17. Rajeev Thakur, Robert Ross, and Robert Latham. Implementing byte-range locks
using MPI one-sided communication. In Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, 12th European PVM/MPI Users’ Group
Meeting, pages 120–129. LNCS 3666, Springer, September 2005.

10

The submitted manuscript has been partially created by the University of
Chicago as Operator of Argonne National Laboratory (“Argonne”) under Con-
tract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Gov-
ernment retains for itself, and others acting on its behalf, a paid-up, nonexclu-
sive, irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

11

